0901-生成对抗网络GAN的原理简介 生成对抗网络 gan

   2023-03-08 学习力1221
核心提示:目录一、GAN 概述二、GAN 的网络结构三、通过一个举例具体化 GAN四、GAN 的设计细节pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html一、GAN 概述GAN(生成对抗网络,Generative Adversarial Networks) 的产生来源于一个灵机一动

pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html

一、GAN 概述

GAN(生成对抗网络,Generative Adversarial Networks) 的产生来源于一个灵机一动的想法:What I cannot create, I do not understand.(那些我所不能创造的,我也没有真正地理解它。)

类似的,如果深度学习不能创造图片,那么它也没有真正地理解图片。那段时间深度学习已经开始在各类计算机视觉领域中达到了一个较高的成就,在很多任务中都取得了突破,但是人们一直对神经网络的黑盒模型表示质疑,也因此更多的人想从可视化的角度来套索卷及网络所学习的特征和特征间的组合,而 GAN 则从生成学习的角度展示了神经网络的强大能力。

GAN 解决了非监督学习中的著名问题:给定一批样本,训练一个系统能够生成类似的样本。

二、GAN 的网络结构

0901-生成对抗网络GAN的原理简介

GAN 的网络结构图如上图所示,主要包含以下两个子网络:

  • 生成器(generator):输入一个随机噪声,生成一张图片
  • 判别器(discriminator):判断输入的图片时真图片还是假图片

训练判别器的时候,需要利用生成器生成的假图片和真实图片;训练生成器的时候,只需要用噪声生成假图片。判别器用来评估生成的假图片的质量,促使生成器相应地调整参数。

生成器的目标是尽可能地生成以假乱真的图片,让判别器以为这是真的图片;判别器的目标是将生成器生成的图片和真实图片区分开。可以看出这两者的目标相反,在训练过程中相互对抗,这也是它被称作生成对抗网络的原因。

三、通过一个举例具体化 GAN

上述的描述可能过于抽象,现在让我们用收藏齐白石作品的书画收藏家和假画贩子的例子来说明。

下图为齐白石画虾图真迹。

0901-生成对抗网络GAN的原理简介

假画贩子相当于是生成器,他们希望能够模仿大师真迹伪造出以假乱真的假画,骗过收藏家;书画收藏家则希望把赝品和真迹区分开。在下述的例子中,假画贩子和收藏家所交易的画,主要都是齐白石画的虾。

在这个例子中,假设一开始假画贩子和收藏家都是新手,他们对真迹和赝品的概念都很模糊。假画贩子仿造出来的画几乎都是鬼画符,而收藏家也傻啦吧唧的把不少赝品当做了真迹,也有很多真迹当做了赝品。

起初,收藏家通过一堆赝品和真迹,发现画中的虾有一对大钳子,如果画中没有这个大钳子,则一概过滤掉,当做是赝品;假画贩子中的一堆画中没有大钳子的赝品基本都血本无归,只有有大钳子的赝品才被收藏家傻乎乎的买去了,因此假画贩子吸取经验,在所有的赝品中都加上了大钳子,其他部分还是鬼画符。

下图为假画贩子的第一版赝品。

0901-生成对抗网络GAN的原理简介

魔高一尺道高一丈,收藏家买了所有的画都有了大钳子,但是收藏家发现还是不对劲,因为还是有些画是赝品,因此收藏家又一次闭关修炼,发现齐白石画的虾不仅有大钳子,虾还有弯曲的形状,并且虾须很长;假画贩子也发现了不对劲,只有大钳子的假画很多卖不出去了,因此假画贩子开始日夜作画,渐渐地,他发现只要这幅画有大钳子,虾有弯曲的形状,虾须很长,收藏家就会买,因此假画贩子又一次占了上风。

下图为假画贩子的第二版赝品。

0901-生成对抗网络GAN的原理简介

正所谓道高一尺魔高一丈,假画贩子和收藏家就在这种的博弈情况下,一个鉴定假画的能力越来越强,一个作假画的水平越来越高超,两个人在博弈对抗中,还不断地促使对方学习进步,进而达到了共同提升的目的。

在这个例子中,假画贩子相当于一个生成器,收藏家相当于一个判别器。一开始生成器和判别器的水平都很差,因为二者都是随机初始化。

训练过程分为两步交替进行:

  1. 第一步是训练判别器(只修改判别器的参数,固定生成器),目标是把真迹和赝品区分开
  2. 第二步是训练生成器(只修改生成器的参数,固定判别器),为的是生成的假画能够被判别器判别为真迹

上述两步交替进行,进而分类器和判别器最终都会达到一个较高的水平,直至最后,生成器生成的虾的图片和齐白石的真迹几乎没有区别。

下图所示便是生成器生成的虾。

0901-生成对抗网络GAN的原理简介

四、GAN 的设计细节

下面我们来思考网络结构的设计。

判别器的目标是判断输入的图片是真迹还是赝品,所以可以看成是一个二分类网络,可以设计一个简单的卷积网络完成。

生成器的目标是从噪声中生成一张彩色图片,这里我们采用广泛使用的 DCGAN(Deep Convolutional Generative Adversarial Networks)结构,也就是全卷机网络,它的结构如下图所示。

0901-生成对抗网络GAN的原理简介

网路的输入是一个 100 维的噪声,输出是一个 3×64×64 的图片。其中这里的输入可以看成是一个 100×1×1 的图片,通过上卷积慢慢增大为 4×4、8×8、16×16、32×32 和 64×64。

上卷积,或称为转置卷积,是一种特殊的卷积操作,类似于卷及操作的逆运算。当卷积的 side 为 2 时,输出相比输入会下采样到一半的尺寸;而当上卷积的 side 为 2时,输出会上采样到输入的两倍尺寸。

这种上采样的方法可以理解为图片的信息保存于 100 个向量之中,神经网络根据这 100 个向量描述的信息,前几步的上采样先勾勒出轮廓、色调等基础信息,后几步上采样慢慢完善细节。网络越深,细节越详细。

在 DCGAN 中,判别器的结构和生成器对称:生成器中采用上采样的卷积,判别器中就采用下采样的卷积,生成器是根据噪声输出一张 64×64×3 的图片,而判别器则是根据输入的 64×64×3 的图片输出图片属于正负样本的分数(概率)。

 
反对 0举报 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 生成对抗网络--Generative Adversarial Networks (GAN)
    生成对抗网络--Generative Adversarial Network
    @目录一、简介二、原理三、网络结构四、实例:自动生成数字0-9五、训练GAN的技巧六、源码打赏●lan Goodfellow 2014年提出●非监督式学习任务●使用两个深度神经网络: Generator (生成器), Discriminator(判别器)二、原理举一个制造假钞的例子:生成器:制造假
    03-08
  • 强化学习在生成对抗网络文本生成中扮演的角色(
    5. 一些细节 + 一些延伸上文所述的,只是 RL + GAN 进行文本生成的基本原理,大家知道,GAN在实际运行过程中任然存在诸多不确定因素,为了尽可能优化 GAN 文本生成的效果,而后发掘更多GAN在NLP领域的潜力,还有一些值得一提的细节。5.1. Reward Baseline:奖
    03-08
  • 科普 | ​生成对抗网络(GAN)的发展史
    科普 | ​生成对抗网络(GAN)的发展史
    来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命。这场革命产生了一些重大的技术突破。Ian Goodfellow等人在“Generative Adversarial Networks”中提出了生成对抗网络。
    03-08
  • 生成对抗网络(GAN)的理论与应用完整入门介绍
    生成对抗网络(GAN)的理论与应用完整入门介绍
    本文包含以下内容:1.为什么生成模型值得研究2.生成模型的分类3.GAN相对于其他生成模型相比有什么优势4.GAN基本模型5.改进的GANs6.GAN有哪些应用7.GAN的前沿研究 一、为什么生成模型值得研究主要基于以下几个原因:1.  从生成模型中训练和采样数据能很好的
    03-08
  • 七个不容易被发现的生成对抗网络(GAN)用例
    七个不容易被发现的生成对抗网络(GAN)用例
    像许多追随AI发展的人一样,我无法忽略生成建模的最新进展,尤其是图像生成中生成对抗网络(GAN)的巨大成功。看看下面这些样本:它们与真实照片几乎没有区别! 从2014年到2018年,面部生成的进展也非常显着。这些结果让我感到兴奋,但我内心总是怀疑它们是
    03-08
  • 生成对抗网络GAN详细推导 生成对抗网络详解
    生成对抗网络GAN详细推导 生成对抗网络详解
    转自:https://blog.csdn.net/ch18328071580/article/details/966900161、什么是GAN?生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编码器)。我们之前学习过的机
    03-08
  • 生成式对抗网络(GAN)学习笔记
    生成式对抗网络(GAN)学习笔记
    图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁、内置的语音助手。这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为
    02-10
  • GAN相关:PAN(Perceptual Adversarial Network)/ 感知对抗网络
    GAN相关:PAN(Perceptual Adversarial Network
    GAN相关:PAN(Perceptual Adversarial Network)/ 感知对抗网络Perceptual Adversarial Networks for Image-to-Image TransformationChaoyue Wang et alintro首先介绍pixel-wise的图像任务。指出用传统的l1和l2 norm来进行计算会带来一些问题,比如丢失高频
    02-09
  • 对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
    对抗样本(论文解读五):Perceptual-Sensitive GA
    准备写一个论文学习专栏,先以对抗样本相关为主,后期可能会涉及到目标检测相关领域。内容不是纯翻译,包括自己的一些注解和总结,论文的结构、组织及相关描述,以及一些英语句子和相关工作的摘抄(可以用于相关领域论文的写作及扩展)。平时只是阅读论文,有很
    02-09
  • 生成对抗网络(GAN,Generative Adversarial Network)介绍
    生成对抗网络(GAN,Generative Adversarial Ne
    生成对抗网络(GAN,Generative Adversarial Network)介绍flyfish在无监督学习中,最近的突破有哪些?看一个GAN的应用第一张图是用GAN将一副古代女子的画像恢复成真人的效果第二张是将真人效果图的面容表情更改成笑容++Yann LeCun 的回答是有史以来GAN是最酷
    02-09
点击排行