对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

   2023-02-09 学习力1059
核心提示:准备写一个论文学习专栏,先以对抗样本相关为主,后期可能会涉及到目标检测相关领域。内容不是纯翻译,包括自己的一些注解和总结,论文的结构、组织及相关描述,以及一些英语句子和相关工作的摘抄(可以用于相关领域论文的写作及扩展)。平时只是阅读论文,有很

准备写一个论文学习专栏,先以对抗样本相关为主,后期可能会涉及到目标检测相关领域。

内容不是纯翻译,包括自己的一些注解和总结,论文的结构、组织及相关描述,以及一些英语句子和相关工作的摘抄(可以用于相关领域论文的写作及扩展)。

平时只是阅读论文,有很多知识意识不到,当你真正去着手写的时候,发现写完之后可能只有自己明白做了个啥。包括从组织、结构、描述上等等很多方面都具有很多问题。另一个是对于专业术语、修饰、语言等相关的使用,也有很多需要注意和借鉴的地方。

本专栏希望在学习总结论文核心方法、思想的同时,期望也可以学习和掌握到更多论文本身上的内容,不论是为自己还有大家,尽可能提供更多可以学习的东西。

当然,对于只是关心论文核心思想、方法的,可以只关注摘要、方法及加粗部分内容,或者留言共同学习。
————————————————

Perceptual-Sensitive GAN for Generating Adversarial Patches

AishanLiu§,XianglongLiu§∗,JiaxinFan§,YuqingMa§,AnlanZhang§, HuiyuanXie † and DachengTao‡ §State Key Laboratory of Software Development Environment, Beihang University, China {liuaishan, xlliu, jxfan, mayuqing, zal1506}@buaa.edu.cn† Department of Computer Science and Technology, University of Cambridge, UK [email protected] ‡UBTECH Sydney AI Centre, SIT, FEIT, University of Sydney, Australia [email protected]

发表于AAAI 2019

源码:https://github.com/liuaishan (需要好好研究学习一下)

感知敏感的GAN生成对抗块

Abstract

现有攻击策略还远远不能生成具有强大攻击能力且视觉自然的对抗块,因为它们往往忽略了被攻击网络对对抗块的感知敏感性,包括与图像上下文的相关性和视觉注意力。

提出了感知敏感的GAN(PS-GAN)同时增强视觉保真度与攻击性能来生成对抗块。
将块生成视为通过对抗过程的块到块的变换,输入任意类型的块输出与攻击图像感知高相关的对抗块。
为了进一步提高攻击能力,提出了一种结合对抗生成的注意机制来预测关键的攻击区域,从而生成更真实、更具攻击性的对抗块。

semi-white box and black-box ; GTSRB and ImageNet。

Introduction

On one side, adversarial examples pose potential security threats by attacking or misleading the practical deep learning applications like auto driving and face recognition system. On the other side, adversarial examples are also valuable and beneficial to the deep learning models, as they are able to provide insights into their strengths, weaknesses, and blind-spots.

In the past years, various typical techniques have been developed to produce adversarial examples. such as gradient-based algorithms, optimization-based methods and network-based techniques. the generative adversarial networks (GANs) technique is capable to approximate the true data distribution.

Compared to the traditional perturbation based adversarial examples, the adversarial patch enjoys the advantages of being input-independent and scene independent,and can be easily placed on any input data with general attack ability.

对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
Prior studies in perception and psychophysics indicate that the perceptual sensitivity plays a quite important role in helping accomplish the robust visual recognition.找到一种能够生成的对抗块可以欺骗被攻击网络的视觉感知度的攻击方法。
对抗块在视觉上应该是自然的,与图像内容具有很强的感知相关性,同时在空间上定位于感知敏感的位置。

To address the problem,our paper proposes a novel attack framework named perceptual-sensitive GAN (PS-GAN) to generate adversarial patches. 利用被攻击网络的视觉感知,增强视觉保真以及攻击性能,使用补丁到补丁的翻译过程,以追求视觉上的自然和上下文相关的对抗性补丁。同时引入视觉注意去捕获空间分布感知,引导攻击位置。

Perceptual-Sensitive GAN

In this section,we will first introduce the problem definition, and then elaborate the framework, .

对抗样本x`生成:m为mask=0/1,δ为对抗块,x为原图像

对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
深度卷积神经网络(CNNs)对输入图像中目标的视觉保真度和空间定位具有很强的感知敏感性.
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
1)引入块到块的翻译过程:输入为特定的块种子及被攻击的图像,输出为与输入块视觉相似及与输入图像相符的对抗块。分别使用GAN网络的生成器与判别器进行相关任务完成。

2)目标模型F负责引导生成块的对抗攻击能力。

3)为了建模空间位置的敏感度,引入注意模型M来捕获被攻击网络的注意力分布,从而决定攻击能力强的补丁的位置。

我们的对抗样本生成:M(x)表示通过注意模型获取的位置,G为GAN
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

1. Visual Fidelity & Perceptual Correlation
对抗生成损失:z表示噪声,
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
不同于条件GAN(cGAN),即使我们也可以将输入块作为条件。在PS-GAN中,生成器不需要噪声z也可以学习一个映射。实践中,我们仅以dropout的形式来提供噪声,应用于我们G的一些层。此外,我们同时结合了鉴别器和目标模型来指导对好发生器的追求,从而区分了原始图像和攻击,而不是同cGAN把干扰作为条件输入。

同时引入块损失来进一步增强与种子块和攻击图像的感知相关性,与图像的视觉融合包括像素级与视觉级。
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
2.Attention Sensitivity & Attacking Ability
对抗损失:
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

On the other hand,the attacking performance highly relies on the visual attention sensitivity of the attacked networks, which tries to explain which part of the image contributes more to the model decisions (Zeiler and Fergus 2014; Cao et al. 2015).

borrow the visual attention technique to predict the critical attacking area.
注意这里的注意力机制,他利用的是Grad-CAM,也就是利用网络回传梯度的大小,作为注意权重来判别安放位置
。(并非原注意力模型。。。)

最终的块生成式:
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

Network Architecture

GAN为基本的编解码器
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
具体的原理上面已经讲过,具体的细节还需要根据代码进一步理解。
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
块训练集表示最后生成对抗块的一个风格(涂鸦、黑白等等)
首先通过最大化生成器的损失来k步优化判别器W_D;
然后通过最小化总体损失来优化生成器W_G。

(他这里算法描述是相当于多次通过Grad-CAM来获取图像的注意权重,但是对于一张图象来说,梯度权重应该是固定的,不知道代码里面是如何利用的,待研究。)

论文指出对于G和D分别使用了Adam和SGD优化函数,,有待了解GAN。

实验

在数据集GTSRB和 ImageNet上通过三个方面比较我们的方法与 the state-of-the-art adversarial patch methods: GoogleAp 和 LaVAN :攻击成功率、视觉保真性及时间消耗。

然后探索了其在灰盒和黑盒下的可转移性和泛化性

Datasets and Models

We choose QuickDraw (J.Jongejanand Fox-Gieg. 2016) as the corresponding patch dataset. QuickDraw is a collection of 50 million drawings and scrawls across 345 categories.
为了 generate scrawl-like adversarial patches

自己从数据集中选择了一些类别,包括 GTSRB 和ImageNet,块集的类别也是从ImageNet从自选的几个

攻击模型:VGG16、ResNet-34,VY。

Implementation Details:Tensorflow and Keras、NVIDIA Tesla K80 GPU cluster、250 epochs with a batch size of 64, with the learning rate of 0.0002, decreased by 10% every 900 steps. As for the hyperparameters in loss function, we set λ range from 0.002 to 0.005 and γ to 1.0 and δ to 0.0001, respectively. (也没说为什么,就是直接取)

Comparative Experiments

Firstly, we compare the attacking performance of our method with GoogleAp and LaVAN on GTSRB and ImageNet.

Attacking Ability :这里对比了不同epoch下不同攻击的攻击效果,及块的更新结果。
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

表1展示了不同攻击方法的攻击效果,因为GoogleAp与LaVAN在生成块的过程当中是没有限制的,所以我们引入了弱限制版本即PS-GAN*,也即对应对应图3(e)-(f),表示扰动比较大的情况。扰动大、攻击效果好,但是牺牲了视觉保真度如Figure3(b)-(f)。

Visual Fidelity & Perceptual Correlation
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
如图4所示,我们方法生成的对抗块相比于其他攻击方法生成的更加自然和和谐。

我们的模型使用受限的、感知相关度高的噪声来修改这些patch,因此对图像的扰动对人类来说是不可见的,但对深度学习模型却是致命的,会导致错误的分类。

Time Consumption

We also investigate ,
GoogleAp and LaVAN respectively spend 61.2s and 65.4s on producing one patch on GTSRB datasets, and similarly 72.3s and 81.5s on ImageNet. PS-GAN only takes 0.106s and 0.111s per patch for GTSRB and ImageNet, which means that PS-GAN enjoys both the fast computation and the ease for use in practice.

Semi-white box and Black box Attack

Semi-whitebox Setting
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
灰盒攻击下的攻击效果如上表。(灰盒攻击待理解,,)

Generalization Ability
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
测试在训练阶段没有见过的类别的图像和块输入模型,看其输出后图像的攻击效果如上。

(这里发现了之前存在的一个问题:可转移性指的是攻击模型产生的对抗样本对于不同模型的攻击效果;而泛化性指的是防御方法或者是攻击模型,对于未见过的攻击方法或样本,其原有的防御及攻击效果的能力是否仍有效) 。可转移可泛化不知道这样理解对不对?!

Transferability & Blackbox Attack
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
如上表3所示,对角线上的结果对应“白盒”或“半白盒”的攻击设置,而其他的结果对应“黑盒”的攻击。即训练阶段的目标模型与测试阶段的目标模型的异同。训练阶段产生的对抗块是否对其他不同分类模型有攻击效果

Visual Attention
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches
这个(b)图是怎么得出来的,,不太明白??

Physical World Attack
In this section, a physical world attack experiment is conducted to validate the practical effectiveness. 真实世界图像采集及作如下变换之后用于训练产生对抗块并贴附测试。
对抗样本(论文解读五):Perceptual-Sensitive GAN for Generating Adversarial Patches

 
反对 0举报 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 生成对抗网络--Generative Adversarial Networks (GAN)
    生成对抗网络--Generative Adversarial Network
    @目录一、简介二、原理三、网络结构四、实例:自动生成数字0-9五、训练GAN的技巧六、源码打赏●lan Goodfellow 2014年提出●非监督式学习任务●使用两个深度神经网络: Generator (生成器), Discriminator(判别器)二、原理举一个制造假钞的例子:生成器:制造假
    03-08
  • 0901-生成对抗网络GAN的原理简介 生成对抗网络 gan
    0901-生成对抗网络GAN的原理简介 生成对抗网络
    目录一、GAN 概述二、GAN 的网络结构三、通过一个举例具体化 GAN四、GAN 的设计细节pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html一、GAN 概述GAN(生成对抗网络,Generative Adversarial Networks) 的产生来源于一个灵机一动
    03-08
  • 强化学习在生成对抗网络文本生成中扮演的角色(
    5. 一些细节 + 一些延伸上文所述的,只是 RL + GAN 进行文本生成的基本原理,大家知道,GAN在实际运行过程中任然存在诸多不确定因素,为了尽可能优化 GAN 文本生成的效果,而后发掘更多GAN在NLP领域的潜力,还有一些值得一提的细节。5.1. Reward Baseline:奖
    03-08
  • 科普 | ​生成对抗网络(GAN)的发展史
    科普 | ​生成对抗网络(GAN)的发展史
    来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命。这场革命产生了一些重大的技术突破。Ian Goodfellow等人在“Generative Adversarial Networks”中提出了生成对抗网络。
    03-08
  • 生成对抗网络(GAN)的理论与应用完整入门介绍
    生成对抗网络(GAN)的理论与应用完整入门介绍
    本文包含以下内容:1.为什么生成模型值得研究2.生成模型的分类3.GAN相对于其他生成模型相比有什么优势4.GAN基本模型5.改进的GANs6.GAN有哪些应用7.GAN的前沿研究 一、为什么生成模型值得研究主要基于以下几个原因:1.  从生成模型中训练和采样数据能很好的
    03-08
  • 七个不容易被发现的生成对抗网络(GAN)用例
    七个不容易被发现的生成对抗网络(GAN)用例
    像许多追随AI发展的人一样,我无法忽略生成建模的最新进展,尤其是图像生成中生成对抗网络(GAN)的巨大成功。看看下面这些样本:它们与真实照片几乎没有区别! 从2014年到2018年,面部生成的进展也非常显着。这些结果让我感到兴奋,但我内心总是怀疑它们是
    03-08
  • 生成对抗网络GAN详细推导 生成对抗网络详解
    生成对抗网络GAN详细推导 生成对抗网络详解
    转自:https://blog.csdn.net/ch18328071580/article/details/966900161、什么是GAN?生成对抗网络简称GAN,是由两个网络组成的,一个生成器网络和一个判别器网络。这两个网络可以是神经网络(从卷积神经网络、循环神经网络到自编码器)。我们之前学习过的机
    03-08
  • 生成式对抗网络(GAN)学习笔记
    生成式对抗网络(GAN)学习笔记
    图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁、内置的语音助手。这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为
    02-10
  • GAN相关:PAN(Perceptual Adversarial Network)/ 感知对抗网络
    GAN相关:PAN(Perceptual Adversarial Network
    GAN相关:PAN(Perceptual Adversarial Network)/ 感知对抗网络Perceptual Adversarial Networks for Image-to-Image TransformationChaoyue Wang et alintro首先介绍pixel-wise的图像任务。指出用传统的l1和l2 norm来进行计算会带来一些问题,比如丢失高频
    02-09
  • 生成对抗网络(GAN,Generative Adversarial Network)介绍
    生成对抗网络(GAN,Generative Adversarial Ne
    生成对抗网络(GAN,Generative Adversarial Network)介绍flyfish在无监督学习中,最近的突破有哪些?看一个GAN的应用第一张图是用GAN将一副古代女子的画像恢复成真人的效果第二张是将真人效果图的面容表情更改成笑容++Yann LeCun 的回答是有史以来GAN是最酷
    02-09
点击排行