学习笔记TF028:实现简单卷积网络

   2023-02-13 学习力932
核心提示:载入MNIST数据集。创建默认Interactive Session。初始化函数,权重制造随机噪声打破完全对称。截断正态分布噪声,标准差设0.1。ReLU,偏置加小正值(0.1),避免死亡节点(dead neurons)。卷积层函数,tf.nn.conv2d,TensorFlow 2 维卷积函数,参数x输入,W卷积

载入MNIST数据集。创建默认Interactive Session。

初始化函数,权重制造随机噪声打破完全对称。截断正态分布噪声,标准差设0.1。ReLU,偏置加小正值(0.1),避免死亡节点(dead neurons)。

卷积层函数,tf.nn.conv2d,TensorFlow 2 维卷积函数,参数x输入,W卷积参数,卷积核尺寸,channel个数,卷积核数量(卷积层提取特征数量)。Strides卷积模板移动步长,全1代表不遗漏划过图片每一个点。Padding代表边界处理方式,SAME边界加Padding,卷积输出、输入保持同样尺寸。

池化层函数,tf.nn.max_pool,TensorFlow 最大池化函数。2x2最大池化,2x2像素块降为1x1像素。最大池化保留原始像素块灰度值最高像素,保留最显著特征。strides设横竖方向2步长。

定义输入placeholder,x特征,y真实label。卷积神经网络空间结构信息,1D输入向量,转为2D图片结构。尺寸[-1,28,28,1]。-1代表样本数量不固定。1代表颜色通道数量。tf.reshape tensor变形函数。

第一个卷积层,卷积函数初始化,weights、bias。[5,5,1,32]代表卷积核尺寸5x5,1个颜色通道,32个不同卷积核。使用conv2d函数卷积操作,加偏置,使用ReLU激活函数非线性处理。使用最大池化函数max_pool_2x2池化操作卷积输出结果。

第二个卷积层,卷积核64个,提取64种特征。经历两次步长2x2最大池化,边长只有1/4,图片尺寸28x28变7x7.第二个卷积层卷积核数量64,输出tensor尺寸7x7x64。使用tf.reshape函数对第二个卷积层输出tensor变形,转成1D向量,连接一个全连接层,隐含节点1024,使用ReLU激活函数。

使用Dropout层减轻过拟合。Dropout,通过一个placeholder传入keep_prob比率控制。训练时,随机丢弃部分节点数据减轻过拟合,预测时保留全部数据追求最好预测性能。

Dropout层输出连接Softmax层,得到最后概率输出。

定义损失函数cross_entropy。优化器使用Adam,给予较小学习速率1e-4。

定义评测准确率操作。

训练,初始化所有参数,设置训练时Dropout的keep_prob比率0.5.使用大小50的mini-batch,进行20000次训练迭代,样本数量100万。每100次训练,评测准确率,keep_prob设1,实时监测模型性能。

全部训练完成,测试集全面测试,得到整体分类准确率。

99.2%准确率,卷积网络对图像特征提取抽象,卷积核权值共享。

    from tensorflow.examples.tutorials.mnist import input_data
    import tensorflow as tf
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    sess = tf.InteractiveSession()
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
  
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')  
                        
    x = tf.placeholder(tf.float32, [None, 784])
    y_ = tf.placeholder(tf.float32, [None, 10])
    x_image = tf.reshape(x, [-1,28,28,1])
                        
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.global_variables_initializer().run()
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

 

参考资料:
《TensorFlow实战》

欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

 
反对 0举报 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(2)
    【深度学习系列】卷积神经网络CNN原理详解(一)
    本文为【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理(2)从上文的计算中我们可以看到,同一层的神经元可以共享卷积核,那么对于高位数据的处理将会变得非常简单。并且使用卷积核后图片的尺寸变小,方便后续计算,并且我们不需要手动去选取特征,
    03-08
  • 技术向:一文读懂卷积神经网络 - 艾斯1213
    技术向:一文读懂卷积神经网络自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先
    03-08
  • 卷积神经网络CNN理解 卷积神经网络 简书
    自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明
    03-08
  • 理解图像的卷积
    转自:https://www.zhihu.com/question/22298352从数学上讲,卷积就是一种运算。某种运算,能被定义出来,至少有以下特征:首先是抽象的、符号化的其次,在生活、科研中,有着广泛的作用比如加法: ,是抽象的,本身只是一个数学符号在现实中,有非常多的意
    03-08
  • 什么是卷积 什么是卷积网络
    什么是卷积 什么是卷积网络
    目录Feature mapsWhy not Linear335k or 1.3MBem...Receptive FieldFully connnectedPartial connectedLocally connectedRethink Linear layerFully VS LovallyWeight sharingWhy call Convolution?2D ConvolutionConvolution in Computer VisionCNN on feat
    03-08
  • Tensorflow--一维离散卷积 tensorflow一维卷积神经网络
    Tensorflow--一维离散卷积 tensorflow一维卷积
    一维离散卷积的运算是一种主要基于向量的计算方式一.一维离散卷积的计算原理一维离散卷积通常有三种卷积类型:full卷积,same卷积和valid卷积1.full卷积full卷积的计算过程如下:K沿着I顺序移动,每移动一个固定位置,对应位置的值相乘,然后对其求和其中K称
    03-08
  • TensorFlow系列专题(十四): 手把手带你搭建卷积神经网络实现冰山图像分类
    TensorFlow系列专题(十四): 手把手带你搭建卷积
    目录:冰山图片识别背景数据介绍数据预处理模型搭建结果分析总结 一、冰山图片识别背景这里我们要解决的任务是来自于Kaggle上的一道赛题(https://www.kaggle.com/c/statoil-iceberg-classifier-challenge),简单介绍一下赛题的背景:在加拿大的东海岸经常
    03-08
  • 卷积神经网络的“卷积”操作不等于数学上定义的卷积操作
    卷积神经网络的“卷积”操作不等于数学上定义的
    在介绍卷积神经网络CNN的时候,大部分教材在介绍“卷积操作”的时候都与下面这张图类似的说明这点让人很困惑,因为在数学上,卷积运算是这么定义的\((f * g )(t) = \int_{0}^{t} f(\tau) g(t - \tau)\, d\tau\)很明显,在与\(f(\tau)\)相乘的是\(g(t-\tau)\)
    03-08
  • 卷积神经网络——池化层学习——最大池化
    卷积神经网络——池化层学习——最大池化
    池化层(Pooling layers)除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们来看一下。先举一个池化层的例子,然后我们再讨论池化层的必要性。假如输入是一个4×4矩阵,用到的池化类型是最大池化(max
    03-08
  • opecv 卷积原理、边缘填充方式、卷积操作详解
    opecv 卷积原理、边缘填充方式、卷积操作详解
    什么是二维卷积呢?看下面一张图就一目了然:卷积就是循环对图像跟一个核逐个元素相乘再求和得到另外一副图像的操作,比如结果图中第一个元素5是怎么算的呢?原图中3×3的区域与3×3的核逐个元素相乘再相加:5=1×1+2×0+1×0+0×0+1×0+1×0+3×0+0×0+2×2
    03-08
点击排行