《动手学深度学习》系列笔记 —— 循环神经网络

   2023-02-09 学习力716
核心提示:目录1. 循环神经网络的构造2. 从零开始实现循环神经网络2.1 one-hot向量2.2 初始化模型参数2.3 定义模型2.4 裁剪梯度2.5 定义预测函数2.6 困惑度2.7 定义模型训练函数2.8 训练模型并创作歌词3. 循环神经网络的简介实现3.1 定义模型下图展示了如何基于循环神经






下图展示了如何基于循环神经网络实现语言模型。基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量\(H\),用\(H_{t}\)表示\(H\)在时间步\(t\)的值。\(H_{t}\)的计算基于\(X_{t}\)\(H_{t-1}\),可以认为\(H_{t}\)记录了到当前字符为止的序列信息,利用\(H_{t}\)对序列的下一个字符进行预测。
《动手学深度学习》系列笔记 —— 循环神经网络

1. 循环神经网络的构造

假设\(\boldsymbol{X}_t \in \mathbb{R}^{n \times d}\)是时间步\(t\)的小批量输入,\(\boldsymbol{H}_t \in \mathbb{R}^{n \times h}\)是该时间步的隐藏变量,则:

\[\boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). \]

其中,\(\boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h}\)\(\boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h}\)\(\boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h}\)\(\phi\)函数是非线性激活函数。由于引入了\(\boldsymbol{H}_{t-1} \boldsymbol{W}_{hh}\)\(H_{t}\)能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于\(H_{t}\)的计算基于\(H_{t-1}\),上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。

在时间步\(t\),输出层的输出为:

\[\boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. \]

其中\(\boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q}\)\(\boldsymbol{b}_q \in \mathbb{R}^{1 \times q}\)

2. 从零开始实现循环神经网络

我们先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里我们使用周杰伦的歌词作为语料,首先我们读入数据:

import torch
import torch.nn as nn
import time
import math
import sys
sys.path.append("/home/kesci/input")
import d2l_jay9460 as d2l
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

2.1 one-hot向量

我们需要将字符表示成向量,这里采用one-hot向量。假设词典大小是\(N\),每次字符对应一个从\(0\)\(N-1\)的唯一的索引,则该字符的向量是一个长度为\(N\)的向量,若字符的索引是\(i\),则该向量的第\(i\)个位置为\(1\),其他位置为\(0\)。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。

def one_hot(x, n_class, dtype=torch.float32):
    result = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)  # shape: (n, n_class)
    result.scatter_(1, x.long().view(-1, 1), 1)  # result[i, x[i, 0]] = 1
    return result
    
x = torch.tensor([0, 2])
x_one_hot = one_hot(x, vocab_size)
print(x_one_hot)
print(x_one_hot.shape)
print(x_one_hot.sum(axis=1))

我们每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步\(t\)的输入为\(\boldsymbol{X}_t \in \mathbb{R}^{n \times d}\),其中\(n\)为批量大小,\(d\)为词向量大小,即one-hot向量长度(词典大小)。

def to_onehot(X, n_class):
    return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)

2.2 初始化模型参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: q

def get_params():
    def _one(shape):
        param = torch.zeros(shape, device=device, dtype=torch.float32)
        nn.init.normal_(param, 0, 0.01)
        return torch.nn.Parameter(param)

    # 隐藏层参数
    W_xh = _one((num_inputs, num_hiddens))
    W_hh = _one((num_hiddens, num_hiddens))
    b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))
    return (W_xh, W_hh, b_h, W_hq, b_q)

2.3 定义模型

函数rnn用循环的方式依次完成循环神经网络每个时间步的计算。

def rnn(inputs, state, params):
    # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

做个简单的测试来观察输出结果的个数(时间步数),以及第一个时间步的输出层输出的形状和隐藏状态的形状。

print(X.shape)
print(num_hiddens)
print(vocab_size)
state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(inputs), inputs[0].shape)
print(len(outputs), outputs[0].shape)
print(len(state), state[0].shape)
print(len(state_new), state_new[0].shape)

《动手学深度学习》系列笔记 —— 循环神经网络

2.4 裁剪梯度

循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 \(\boldsymbol{g}\),并设裁剪的阈值是\(\theta\)。裁剪后的梯度

\[ \min\left(\frac{\theta}{\|\boldsymbol{g}\|}, 1\right)\boldsymbol{g} \]

\(L_2\)范数不超过\(\theta\)

def grad_clipping(params, theta, device):
    norm = torch.tensor([0.0], device=device)
    for param in params:
        norm += (param.grad.data ** 2).sum()
    norm = norm.sqrt().item()
    if norm > theta:
        for param in params:
            param.grad.data *= (theta / norm)

2.5 定义预测函数

以下函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数稍显复杂,其中我们将循环神经单元rnn设置成了函数参数,这样在后面小节介绍其他循环神经网络时能重复使用这个函数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
                num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
    state = init_rnn_state(1, num_hiddens, device)
    output = [char_to_idx[prefix[0]]]   # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        # 将上一时间步的输出作为当前时间步的输入
        X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
        # 计算输出和更新隐藏状态
        (Y, state) = rnn(X, state, params)
        # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y[0].argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])`

我们先测试一下predict_rnn函数。我们将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。

predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,
            device, idx_to_char, char_to_idx)

《动手学深度学习》系列笔记 —— 循环神经网络

2.6 困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏。回忆一下“softmax回归”一节中交叉熵损失函数的定义。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size

2.7 定义模型训练函数

跟之前章节的模型训练函数相比,这里的模型训练函数有以下几点不同:

  1. 使用困惑度评价模型。
  2. 在迭代模型参数前裁剪梯度。
  3. 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, is_random_iter, num_epochs, num_steps,
                          lr, clipping_theta, batch_size, pred_period,
                          pred_len, prefixes):
    if is_random_iter:
        data_iter_fn = d2l.data_iter_random
    else:
        data_iter_fn = d2l.data_iter_consecutive
    params = get_params()
    loss = nn.CrossEntropyLoss()

    for epoch in range(num_epochs):
        if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态
            state = init_rnn_state(batch_size, num_hiddens, device)
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
        for X, Y in data_iter:
            if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态
                state = init_rnn_state(batch_size, num_hiddens, device)
            else:  # 否则需要使用detach函数从计算图分离隐藏状态
                for s in state:
                    s.detach_()
            # inputs是num_steps个形状为(batch_size, vocab_size)的矩阵
            inputs = to_onehot(X, vocab_size)
            # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
            (outputs, state) = rnn(inputs, state, params)
            # 拼接之后形状为(num_steps * batch_size, vocab_size)
            outputs = torch.cat(outputs, dim=0)
            # Y的形状是(batch_size, num_steps),转置后再变成形状为
            # (num_steps * batch_size,)的向量,这样跟输出的行一一对应
            y = torch.flatten(Y.T)
            # 使用交叉熵损失计算平均分类误差
            l = loss(outputs, y.long())
            
            # 梯度清0
            if params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            grad_clipping(params, clipping_theta, device)  # 裁剪梯度
            d2l.sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
                    num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

2.8 训练模型并创作歌词

现在我们可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']

下面采用随机采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, True, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)

《动手学深度学习》系列笔记 —— 循环神经网络

3. 循环神经网络的简介实现

3.1 定义模型

我们使用Pytorch中的nn.RNN来构造循环神经网络。在本节中,我们主要关注nn.RNN的以下几个构造函数参数:

  • input_size - The number of expected features in the input x
  • hidden_size – The number of features in the hidden state h
  • nonlinearity – The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'
  • batch_first – If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False

这里的batch_first决定了输入的形状,我们使用默认的参数False,对应的输入形状是 (num_steps, batch_size, input_size)。

forward函数的参数为:

  • input of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.
  • h_0 of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

forward函数的返回值是:

  • output of shape (num_steps, batch_size, num_directions * hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.
  • h_n of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.

现在我们构造一个nn.RNN实例,并用一个简单的例子来看一下输出的形状。

rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
num_steps, batch_size = 35, 2
X = torch.rand(num_steps, batch_size, vocab_size)
state = None
Y, state_new = rnn_layer(X, state)
print(Y.shape, state_new.shape)

我们定义一个完整的基于循环神经网络的语言模型。

class RNNModel(nn.Module):
    def __init__(self, rnn_layer, vocab_size):
        super(RNNModel, self).__init__()
        self.rnn = rnn_layer
        self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) 
        self.vocab_size = vocab_size
        self.dense = nn.Linear(self.hidden_size, vocab_size)

    def forward(self, inputs, state):
        # inputs.shape: (batch_size, num_steps)
        X = to_onehot(inputs, vocab_size)
        X = torch.stack(X)  # X.shape: (num_steps, batch_size, vocab_size)
        hiddens, state = self.rnn(X, state)
        hiddens = hiddens.view(-1, hiddens.shape[-1])  # hiddens.shape: (num_steps * batch_size, hidden_size)
        output = self.dense(hiddens)
        return output, state

类似的,我们需要实现一个预测函数,与前面的区别在于前向计算和初始化隐藏状态。

def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
                      char_to_idx):
    state = None
    output = [char_to_idx[prefix[0]]]  # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        X = torch.tensor([output[-1]], device=device).view(1, 1)
        (Y, state) = model(X, state)  # 前向计算不需要传入模型参数
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y.argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])

使用权重为随机值的模型来预测一次。

model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)

《动手学深度学习》系列笔记 —— 循环神经网络

接下来实现训练函数,这里只使用了相邻采样。

def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes):
    loss = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    model.to(device)
    for epoch in range(num_epochs):
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
        state = None
        for X, Y in data_iter:
            if state is not None:
                # 使用detach函数从计算图分离隐藏状态
                if isinstance (state, tuple): # LSTM, state:(h, c)  
                    state[0].detach_()
                    state[1].detach_()
                else: 
                    state.detach_()
            (output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)
            y = torch.flatten(Y.T)
            l = loss(output, y.long())
            
            optimizer.zero_grad()
            l.backward()
            grad_clipping(model.parameters(), clipping_theta, device)
            optimizer.step()
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]
        

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn_pytorch(
                    prefix, pred_len, model, vocab_size, device, idx_to_char,
                    char_to_idx))

训练模型。

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                            corpus_indices, idx_to_char, char_to_idx,
                            num_epochs, num_steps, lr, clipping_theta,
                            batch_size, pred_period, pred_len, prefixes)

《动手学深度学习》系列笔记 —— 循环神经网络

 
反对 0举报 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 【深度学习】循环神经网络教程 循环神经网络 知乎
    【深度学习】循环神经网络教程 循环神经网络 知
    这是在公司做培训时制作的PPT,教程对循环神经网络以及其应用进行了简单地介绍,主要分为以下六个部分:Why do we need Recurrent Neural Networks?Vanilla Recurrent Neural NetworkBackpropagation Through Time (BPTT)Gradient exploding/vanishing proble
    03-08
  • 深度学习 - 循环神经网络RNN
    深度学习 - 循环神经网络RNN
    当数据是有顺序的时候,我们就可以使用RNN了,比如说话的顺序 有序列化的数据等的。   在介绍RNN之前,我有篇博客是介绍了CNN,简单提一下,在一张大的图片是上,我们有一个fliter滤波器,通过共用参数来扫描这张图片,提取出一张精髓的图片,再在这这张图片
    03-08
  • 拓端tecdat|R语言深度学习Keras循环神经网络(RNN)模型预测多输出变量时间序列
    拓端tecdat|R语言深度学习Keras循环神经网络(RN
    原文链接:http://tecdat.cn/?p=23902原文出处:拓端数据部落公众号递归神经网络被用来分析序列数据。它在隐藏单元之间建立递归连接,并在学习序列后预测输出。在本教程中,我们将简要地学习如何用R中的Keras RNN模型来拟合和预测多输出的序列数据,你也可以
    03-08
  • 循环神经网络(RNN)相关知识 rnn递归神经网络
    循环神经网络(RNN)相关知识 rnn递归神经网络
    文章目录RNN概述前向传播公式通过时间反向传播(BPTT)RNN确定序列长度方式其他RNN结构基于RNN的应用1,序列数据的分析2,序列数据的转换3,序列数据的生成RNN的不足1,从隐藏变量h角度来看2,从梯度传播角度来看RNN概述循环神经网络(RNN)是用于处理序列数据
    02-10
  • 【吴恩达deeplearning.ai】深度学习(9):循环神经网络
    【吴恩达deeplearning.ai】深度学习(9):循环神
    随深度学习技术的发展,使用循环神经网络(Recurrent Neural Network,RNN)建立的各种序列模型,使语音识别、机器翻译及自然语言理解等应用成为可能。表示与类型自然语言、音频等数据都是前后相互关联的数据,比如理解一句话要通过一整句而不是其中的几个词
    02-10
  • 学习记忆循环神经网络心得
    学习记忆循环神经网络心得
          如有缪误欢迎指正  GRU结构向前传播 心得(欢迎指正)当遗忘门等于0的时候当前信息抛弃 之前记忆前传当遗忘门等于1 的时候之前记忆抛弃 当前信息前传当遗忘门的值为0和1之间的时候 调控前传的记忆与信息的比例 QAQQ:LSTM与GRU 的区别A: LSTM
    02-10
  • 协同过滤结合循环神经网络的推荐系统——期末作业
    协同过滤结合循环神经网络的推荐系统——期末作
    Recommendation System using Collaborative Filtering and Recurrent Neural Networkauthor:Fu-ze ZhongEmail: [email protected]School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China.abstractThe behavior of user in an e-c
    02-10
  • 第六讲 循环神经网络--LSTM--stock
    1 !pip install tushare2 import tushare as ts3 import numpy as np4 import tensorflow as tf5 from tensorflow.keras.layers import Dropout, Dense, LSTM6 import matplotlib.pyplot as plt7 import os8 import pandas as pd9 from sklearn.preprocessing
    02-10
  • 循环神经网络RNN 循环神经网络RNN可以处理哪些情况
    循环神经网络RNN 循环神经网络RNN可以处理哪些
    前言我们在思考和判断问题的时候,并不是总是以一个空白的状态进行思考的。我们的思考都是基于我们以前的知识或者经验,比如我们读到这篇博客的时候,考虑到这些词语或者语句表达的是什么意思,都是基于我们以前所学到的知识。也就是说我们的思想具有持续性。
    02-10
  • 循环神经网络系列(二)Tensorflow中dynamic_rnn
    循环神经网络系列(二)Tensorflow中dynamic_rn
    1.回顾上一篇博文(循环神经网络系列(一)Tensorflow中BasicRNNCell)中我们介绍了在Tensoflow中,每个RNN单元的实现,以及对应各个参数的含义。自那之后,我们就能通过Tensorflow实现一个单元的计算了。import tensorflow as tfimport numpy as npx = np.array
    02-09
点击排行