解说pytorch中的model=model.to(device) pytorch基础教程

   2023-02-09 学习力935
核心提示:这篇文章主要介绍了pytorch中的model=model.to(device)使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教这代表将模型加载到指定设备上。其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("c
这篇文章主要介绍了pytorch中的model=model.to(device)使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

这代表将模型加载到指定设备上。

其中,device=torch.device("cpu")代表的使用cpu,而device=torch.device("cuda")则代表的使用GPU。

当我们指定了设备之后,就需要将模型加载到相应设备中,此时需要使用model=model.to(device),将模型加载到相应的设备中。

将由GPU保存的模型加载到CPU上。

将torch.load()函数中的map_location参数设置为torch.device('cpu')

device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

将由GPU保存的模型加载到GPU上。确保对输入的tensors调用input = input.to(device)方法。

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)

将由CPU保存的模型加载到GPU上。

确保对输入的tensors调用input = input.to(device)方法。map_location是将模型加载到GPU上,model.to(torch.device('cuda'))是将模型参数加载为CUDA的tensor。

最后保证使用.to(torch.device('cuda'))方法将需要使用的参数放入CUDA。

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  # Choose whatever GPU device number you want
model.to(device)

补充:pytorch中model.to(device)和map_location=device的区别

一、简介

在已训练并保存在CPU上的GPU上加载模型时,加载模型时经常由于训练和保存模型时设备不同出现读取模型时出现错误,在对跨设备的模型读取时候涉及到两个参数的使用,分别是model.to(device)和map_location=devicel两个参数,简介一下两者的不同。

将map_location函数中的参数设置 torch.load()为 cuda:device_id。这会将模型加载到给定的GPU设备。

调用model.to(torch.device('cuda'))将模型的参数张量转换为CUDA张量,无论在cpu上训练还是gpu上训练,保存的模型参数都是参数张量不是cuda张量,因此,cpu设备上不需要使用torch.to(torch.device("cpu"))。

二、实例

了解了两者代表的意义,以下介绍两者的使用。

1、保存在GPU上,在CPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device('cpu')
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location=device))

解释:

在使用GPU训练的CPU上加载模型时,请传递 torch.device('cpu')给map_location函数中的 torch.load()参数,使用map_location参数将张量下面的存储器动态地重新映射到CPU设备 。

2、保存在GPU上,在GPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.to(device)
# Make sure to call input = input.to(device) on any input tensors that you feed to the model

解释:

在GPU上训练并保存在GPU上的模型时,只需将初始化model模型转换为CUDA优化模型即可model.to(torch.device('cuda'))。

此外,请务必.to(torch.device('cuda'))在所有模型输入上使用该 功能来准备模型的数据。

请注意,调用my_tensor.to(device) 返回my_tensorGPU上的新副本。

它不会覆盖 my_tensor。

因此,请记住手动覆盖张量: my_tensor = my_tensor.to(torch.device('cuda'))

3、保存在CPU,在GPU上加载

保存:

torch.save(model.state_dict(), PATH)

加载:

device = torch.device("cuda")
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH, map_location="cuda:0"))  # Choose whatever GPU device number you want
model.to(device)
# Make sure to call input = input.to(device) on any input tensors that you feed to the model

解释:

在已训练并保存在CPU上的GPU上加载模型时,请将map_location函数中的参数设置 torch.load()为 cuda:device_id。

这会将模型加载到给定的GPU设备。

接下来,请务必调用model.to(torch.device('cuda'))将模型的参数张量转换为CUDA张量。

最后,确保.to(torch.device('cuda'))在所有模型输入上使用该 函数来为CUDA优化模型准备数据。

请注意,调用 my_tensor.to(device)返回my_tensorGPU上的新副本。

它不会覆盖my_tensor。

因此,请记住手动覆盖张量:my_tensor = my_tensor.to(torch.device('cuda'))

本文地址:https://www.linuxprobe.com/pytorch-model-todevice.html

 
反对 0举报 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 基于pytorch框架的图像分类实践(CIFAR-10数据集)
    基于pytorch框架的图像分类实践(CIFAR-10数据集
    在学习pytorch的过程中我找到了关于图像分类的很浅显的一个教程上一次做的是pytorch的手写数字图片识别是灰度图片,这次是彩色图片的分类,觉得对于像我这样的刚刚开始入门pytorch的小白来说很有意义,今天写篇关于这个图像分类的博客.收获的知识1.torchvison
    03-08
  • 今天来捋一捋pytorch官方Faster R-CNN代码
    今天来捋一捋pytorch官方Faster R-CNN代码
    AI编辑:我是小将本文作者:白裳https://zhuanlan.zhihu.com/p/145842317本文已由原作者授权 目前 pytorch 已经在 torchvision 模块集成了 FasterRCNN 和 MaskRCNN 代码。考虑到帮助各位小伙伴理解模型细节问题,本文分析一下 FasterRCNN 代码,帮助新手理解
    03-08
  • 从零搭建Pytorch模型教程(三)搭建Transformer网络
    从零搭建Pytorch模型教程(三)搭建Transformer
    ​前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍。 本文来自公众号CV技术指南的技术总结系列欢迎关注公众号CV技术指南,专注于计算机
    03-08
  • 几种网络LeNet、VGG Net、ResNet原理及PyTorch实现
    几种网络LeNet、VGG Net、ResNet原理及PyTorch
    LeNet比较经典,就从LeNet开始,其PyTorch实现比较简单,通过LeNet为基础引出下面的VGG-Net和ResNet。LeNetLeNet比较经典的一张图如下图LeNet-5共有7层,不包含输入,每层都包含可训练参数;每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输
    03-08
  • Focal Loss 的Pytorch 实现以及实验
    Focal Loss 的Pytorch 实现以及实验
     Focal loss 是 文章 Focal Loss for Dense Object Detection 中提出对简单样本的进行decay的一种损失函数。是对标准的Cross Entropy Loss 的一种改进。 F L对于简单样本(p比较大)回应较小的loss。如论文中的图1, 在p=0.6时, 标准的CE然后又较大的loss
    03-08
  • Pytorch-基础入门之ANN pytorch零基础入门
    在这部分中来介绍下ANN的Pytorch,这里的ANN具有三个隐含层。这一块的话与上一篇逻辑斯蒂回归使用的是相同的数据集MNIST。第一部分:构造模型# Import Librariesimport torchimport torch.nn as nnfrom torch.autograd import Variable# Create ANN Modelclas
    03-08
  • 分享一个PyTorch医学图像分割开源库 python医学图像处理dicom
    分享一个PyTorch医学图像分割开源库 python医学
    昨天点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 我爱计算机视觉授权  分享一位52CV粉丝Ellis开发的基于PyTorch的专注于医学图像分割的开源库,其支持模型丰富,方便易用。其可算为torchio的一个实例,作者将其综合起来,包含众多经典算法,实用性比
    03-08
  • 搞懂Transformer结构,看这篇PyTorch实现就够了
    搞懂Transformer结构,看这篇PyTorch实现就够了
    搞懂Transformer结构,看这篇PyTorch实现就够了昨天下面分享一篇实验室翻译的来自哈佛大学一篇关于Transformer的详细博文。"Attention is All You Need"[1] 一文中提出的Transformer网络结构最近引起了很多人的关注。Transformer不仅能够明显地提升翻译质量,
    03-08
  • 行人重识别(ReID) ——基于MGN-pytorch进行可视化展示
    行人重识别(ReID) ——基于MGN-pytorch进行可视
    https://github.com/seathiefwang/MGN-pytorch下载Market1501数据集:http://www.liangzheng.org/Project/project_reid.html模型训练,修改demo.sh,将 --datadir修改已下载的Market1501数据集地址,将修改CUDA_VISIBLE_DEVICES=2,3自己的GPU设备ID,将修改--
    03-08
  • Pytorch:通过pytorch实现逻辑回归
    Pytorch:通过pytorch实现逻辑回归
    logistic regression逻辑回归是线性的二分类模型(与线性回归的区别:线性回归是回归问题,而逻辑回归是线性回归+激活函数sigmoid=分类问题)模型表达式:f(x)称为sigmoid函数,也称为logistic函数,能将所有值映射到[0,1]区间,恰好符合概率分布,如下图所示
    03-08
点击排行