Python图像运算之图像锐化和边缘检测 python图像平滑处理

   2023-02-09 学习力0
核心提示:目录一.图像锐化1.一阶微分算子2.二阶微分算子二.Roberts算子三.Prewitt算子四.总结一.图像锐化由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来

一.图像锐化

由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是图像受到了平均或积分运算,因此可以对其进行逆运算,从而使图像变得清晰。微分运算是求信号的变化率,具有较强高频分量作用。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。这时需要开展图像锐化和边缘检测处理,加强原图像的高频部分,锐化突出图像的边缘细节,改善图像的对比度,使模糊的图像变得更清晰。

图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。通常使用灰度差分法对图像的边缘、轮廓进行处理,将其凸显。图像锐化的方法分为高通滤波和空域微分法,本章主要介绍Robert算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr算子等[2-3]。

1.一阶微分算子

一阶微分算子一般借助空域微分算子通过卷积完成,但实际上数字图像处理中求导是利用差分近似微分来进行的。梯度对应一阶导数,梯度算子是一阶导数算子。对一个连续函数f(x,y),它在位置(x,y)梯度可表示为一个矢量:

Python图像运算之图像锐化和边缘检测

梯度的模值为公式(2)所示。

Python图像运算之图像锐化和边缘检测

梯度的方向在最大变化率方向上,梯度方向如公式(3)所示。

Python图像运算之图像锐化和边缘检测

对于数字图像,导数可以用差分来近似,则梯度可以表示为:

Python图像运算之图像锐化和边缘检测

在实际中常用区域模板卷积来近似计算,对水平方向和垂直方向各用一个模板,再通过两个模板组合起来构成一个梯度算子。根据模板的大小,其中元素值的不同,可以提出多种模板,构成不同的检测算子,后文中将对各种算子进行详细介绍。

由梯度的计算可知,在图像灰度变化较大的边沿区域其梯度值大,在灰度变化平缓的区域梯度值较小,而在灰度均匀的区域其梯度值为零。根据得到的梯度值来返回像素值,如将梯度值大的像素设置成白色,梯度值小的设置为黑色,这样就可以将边缘提取出来了,或者是加强梯度值大的像素灰度值就可以突出细节了达到了锐化的目的。

2.二阶微分算子

二阶微分算子是求图像灰度变化导数的导数,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构。当图像灰度变化剧烈时,进行一阶微分则会形成一个局部的极值,对图像进行二阶微分则会形成一个过零点,并且在零点两边产生一个波峰和波谷,设定一个阈值检测到这个过零点,如图1所示。

Python图像运算之图像锐化和边缘检测

这样做的好处有两个,一是二阶微分关心的是图像灰度的突变而不强调灰度缓慢变化的区域,对边缘的定位能力更强;二是Laplacian算子是各向同性的,即具有旋转不变性,在一阶微分里,是用|dx|+|dy|来近似一个点的梯度,当图像旋转一个角度时,这个值就会变化,但对于Laplacian算子来说,不管图像怎么旋转,得到的相应值是一样的。

想要确定过零点要以p为中心的一个3×3领域,p点为过零点意味着至少有两个相对的领域像素的符号不同。有四种要检测的情况:左/右、上/下、两个对角。如果g(x,y)的值与一个阈值比较,那么不仅要求相对领域的符号不同,数值差的绝对值也要超过这个阈值,这时p称为一个过零点像素。二阶微分的定义为:

Python图像运算之图像锐化和边缘检测

二阶微分在恒定灰度区域的微分值为零,在灰度台阶或斜坡起点处微分值非零,沿着斜坡的微分值为零。与一阶微分算子相比较,一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;二阶微分算子获得的边界是比较细致的边界,反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。

二.Roberts算子

Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想,其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

Roberts算子的模板分为水平方向和垂直方向,如公式(6)所示,从其模板可以看出,Roberts算子能较好的增强正负45度的图像边缘[4]。

Python图像运算之图像锐化和边缘检测

如公式(7)所示,分别表示图像的水平方向和垂直方向的计算公式。

Python图像运算之图像锐化和边缘检测

Roberts算子像素的最终计算公式如下:

Python图像运算之图像锐化和边缘检测

在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取[3]。该函数主要是利用内核实现对图像的卷积运算,其函数原型如下所示:

dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

  • – src表示输入图像
  • – dst表示输出的边缘图,其大小和通道数与输入图像相同
  • – ddepth表示目标图像所需的深度
  • – kernel表示卷积核,一个单通道浮点型矩阵
  • – anchor表示内核的基准点,其默认值为(-1,-1),位于中心位置
  • – delta表示在储存目标图像前可选的添加到像素的值,默认值为0
  • – borderType表示边框模式

在进行Roberts算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:

dst = convertScaleAbs(src[, dst[, alpha[, beta]]])

  • – src表示原数组
  • – dst表示输出数组,深度为8位
  • – alpha表示比例因子
  • – beta表示原数组元素按比例缩放后添加的值

最后调用addWeighted()函数计算水平方向和垂直方向的Roberts算子。其运行代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8 
absX = cv2.convertScaleAbs(x)      
absY = cv2.convertScaleAbs(y)    
Roberts = cv2.addWeighted(absX,0.5,absY,0.5,0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', 'Roberts算子']  
images = [lenna_img, Roberts]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

其运行结果如图2所示,左边为原始图像,右边为Roberts算子图像锐化提取的边缘轮廓。

Python图像运算之图像锐化和边缘检测

三.Prewitt算子

Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3×3模板对区域内的像素值进行计算,而Robert算子的模板为2×2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像,其计算公式如下所示。

Python图像运算之图像锐化和边缘检测

具体的水平和垂直方向计算公式如下所示:

Python图像运算之图像锐化和边缘检测

Prewitt算子像素的最终计算如公式(11)所示。

Python图像运算之图像锐化和边缘检测

在Python中,Prewitt算子的实现过程与Roberts算子比较相似。通过Numpy定义模板,再调用OpenCV的filter2D()函数实现对图像的卷积运算,最终通过convertScaleAbs()和addWeighted()函数实现边缘提取,代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
 
#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 
#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]],dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]],dtype=int)
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#转uint8
absX = cv2.convertScaleAbs(x)       
absY = cv2.convertScaleAbs(y)    
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)

#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']

#显示图形
titles = ['原始图像', 'Prewitt算子']  
images = [lenna_img, Prewitt]  
for i in range(2):  
   plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()

最终运行结果如图3所示,左边为原始图像,右边为Prewitt算子图像锐化提取的边缘轮廓,其效果图的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。

Python图像运算之图像锐化和边缘检测

四.总结

本文主要介绍图像锐化和边缘检测知识,详细讲解了Roberts算子和Prewitt算子,并通过小珞珞图像进行边缘轮廓提取。图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。

以上就是Python图像运算之图像锐化和边缘检测的详细内容,更多关于Python图像锐化 边缘检测的资料请关注其它相关文章!

原文地址:https://blog.csdn.net/Eastmount/article/details/128303090
 
反对 0举报 0 评论 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • 如何在Abaqus的python中调用Matlab程序
    目录1. 确定版本信息2. 备份python3. 设置环境变量4. 安装程序5. 调试运行参考资料Abaqus2018操作系统Win10 64位Python版本2.7(路径C:\SIMULIA\CAE\2018\win_b64\tools\SMApy\python2.7)2. 备份python将上述的“python2.7”文件夹复制出来,避免因操作错误
    03-16
  • SICP:复数的直角和极坐标的表示(Python实现)
    SICP:复数的直角和极坐标的表示(Python实现)
    数据抽象屏障是控制复杂性的强有力工具,然而这种类型的数据抽象还不够强大有力。从一个另一个角度看,对于一个数据对象可能存在多种有用的表示方式,且我们希望所设计的系统能够处理多种表示形式。比如,复数就可以表示为两种几乎等价的形式:直角坐标形式(
    03-16
  • [个人发展] 我做了一个可以永远谈论任何事情的女士对话AI(TypeScript,Python)
    [个人发展] 我做了一个可以永远谈论任何事情的
    在个人发展中对话式人工智能服务 Eveki我做了虚构角色1这是一项以人工智能为特色的服务,可以再现并享受自然对话。这一次,作为第一个艾小姐发表了。请先尝试实物。服务概览与人工智能对话基本上只需输入您的信息是。对话是用女士的语言进行的,就像人类一样
    03-08
  • ruby写爬虫 ruby python
    ruby写爬虫 ruby python
    http://www.javaeye.com/topic/545160爬虫性能比较http://www.rubyrailways.com/data-extraction-for-web-20-screen-scraping-in-rubyrails/srcapihttp://huacnlee.com/blog/ruby-scrapi-collect-koubei  2009年4月22日 星期三用ruby写的一个网络爬虫程序前
    03-08
  • sf02_选择排序算法Java Python rust 实现
    Java 实现package common;public class SimpleArithmetic {/** * 选择排序 * 输入整形数组:a[n] 【4、5、3、7】 * 1. 取数组编号为i(i属于[0 , n-2])的数组值 a[i],即第一重循环 * 2. 假定a[i]为数组a[k](k属于[i,n-1])中的最小值a[min],即执行初始化 min =i
    02-09
  • Python vs Ruby: 谁是最好的 web 开发语言?
    Python 和 Ruby 都是目前用来开发 websites、web-based apps 和 web services 的流行编程语言之一。 这两种语言在许多方面有相似之处。它们都是高级的面向对象的编程语言,都是交互式脚本语言、都提供标准库且支持持久化。但是,Python 和 Ruby 的解决方法却
    02-09
  • 详解Python手写数字识别模型的构建与使用
    详解Python手写数字识别模型的构建与使用
    目录一:手写数字模型构建与保存1 加载数据集2 特征数据 标签数据3 训练集 测试集4 数据流图 输入层5 隐藏层6 损失函数7 梯度下降算法8 输出损失值 9 模型 保存与使用10 完整源码分享二:手写数字模型使用与测试一:手写数字模型构建与保存1 加载数据集# 1加
  • Python asyncore socket客户端实现方法详解
    Python asyncore socket客户端实现方法详解
    目录介绍1.定义类并且继承 asyncore.dispatcher2.实现类中的回调代码调用父类方法创建socket对象连接服务器3.创建对象并且执行asyncore.loop进入运行循环服务端示例代码运行结果注意介绍asyncore库是python的一个标准库,提供了以异步的方式写入套接字服务的
  • Python+Sklearn实现异常检测
    目录离群检测 与 新奇检测Sklearn 中支持的方法孤立森林 IsolationForestLocal Outlier FactorOneClassSVMElliptic Envelope离群检测 与 新奇检测很多应用场景都需要能够确定样本是否属于与现有的分布,或者应该被视为不同的分布。离群检测(Outlier detectio
  • Python基础教程之while循环用法讲解 Python中的while循环
    Python基础教程之while循环用法讲解 Python中的
    目录1.while 循环2.无限循环3、while 循环使用 else 语句4、简单语句组附小练习:总结1.while 循环Python 中 while 语句的一般形式:while 判断条件(condition):    执行语句(statements)……执行流程图如下:同样需要注意冒号和缩进。另外,在 Python 中
点击排行