Unicode与UTF-8互转(c语言和lua语言) python utf-8转unicode

   2023-02-09 学习力0
核心提示:1. 基础1.1 ASCII码我们知道, 在计算机内部, 全部的信息终于都表示为一个二进制的字符串. 每个二进制位(bit)有0和1两种状态, 因此八个二进制位就能够组合出 256种状态, 这被称为一个字节(byte). 也就是说, 一个字节一共能够用来表示256种不同的状态, 每个状态
1. 基础

1.1 ASCII码

我们知道, 在计算机内部, 全部的信息终于都表示为一个二进制的字符串. 每个二进制
(bit)有0和1两种状态, 因此八个二进制位就能够组合出 256种状态, 这被称为一个字
(byte). 也就是说, 一个字节一共能够用来表示256种不同的状态, 每个状态相应一
个符号, 就是256个符号, 从 0000000到11111111.

上个世纪60年代, 美国制定了一套字符编码, 对英语字符与二进制位之间的关系, 做了统
一规定. 这被称为ASCII码, 一直沿用至今.

ASCII码一共规定了128个字符的编码, 比方空格"SPACE"是32(二进制00100000), 大写的
字母A是65(二进制01000001). 这128个符号(包含32个不能打印出来的控制符号), 仅仅占用
了一个字节的后面7位, 最前面的1位统一规定为0.

1.2 非ASCII编码

英语用128个符号编码就够了, 可是用来表示其它语言, 128个符号是不够的. 比方, 在法
语中, 字母上方有注音符号, 它就无法用ASCII码表示. 于是, 一些欧洲国家就决定, 利
用字节中闲置的最高位编入新的符号. 比方, 法语中的é的编码为130(二进制10000010).
这样一来, 这些欧洲国家使用的编码体系, 能够表示最多256个符号.

可是, 这里又出现了新的问题. 不同的国家有不同的字母, 因此, 哪怕它们都使用256个
符号的编码方式, 代表的字母却不一样. 比方, 130在法语编码中代表了é, 在希伯来语
编码中却代表了字母Gimel (ג), 在俄语编码中又会代表还有一个符号.

NOTE:
可是无论如何, 全部这些编码方式中, 0-127表示的符号是一样的, 不一样的仅仅是128-255
的这一段. // MMMMM

至于亚洲国家的文字, 使用的符号就很多其它了, 汉字就多达10万左右. 一个字节仅仅能表示
256种符号, 肯定是不够的, 就必须使用多个字节表达一个符号. 比方, 中文简体常见的
编码方式是GB2312, 使用两个字节表示一个汉字, 所以理论上最多能够表示
256x256=65536个符号.

2. Unicode

2.1 Unicode的定义

正如上一节所说, 世界上存在着多种编码方式, 同一个二进制数字能够被解释成不同的符
号. 因此, 要想打开一个文本文件, 就必须知道它的编码方式, 否则用错误的编码方式解
读, 就会出现乱码. 为什么电子邮件经常出现乱码?

就是由于发信人和收信人使用的编码
方式不一样.

能够想象, 假设有一种编码, 将世界上全部的符号都纳入当中. 每个符号都给予一个独
一无二的编码, 那么乱码问题就会消失. 这就是Unicode, 就像它的名字都表示的, 这是
一种全部符号的编码.

Unicode也是一种字符编码方法, 只是它是由国际组织设计, 能够容纳全世界全部语言文
字的编码方案. Unicode的学名是"Universal Multiple-Octet Coded Character Set",
简称为UCS. UCS能够看作是"Unicode Character Set"的缩写.

Unicode当然是一个非常大的集合, 如今的规模能够容纳100多万个符号. 每一个符号的编码都
不一样, 比方, U+0639表示阿拉伯字母Ain, U+0041表示英语的大写字母A, U+4E25表示汉
字"". 详细的符号相应表, 能够查询unicode.org, 或者专门的汉字相应表.

2.2 Unicode的问题

须要注意的是, "Unicode仅仅是一个符号集, 它仅仅规定了符号的二进制代码, 却没有规定这
个二进制代码应该怎样存储".

比方, 汉字""的unicode是十六进制数4E25, 转换成二进制数足足有15位
(100111000100101), 也就是说这个符号的表示至少须要2个字节. 表示其它更大的符号,
可能须要3个字节或者4个字节, 甚至很多其它.

这里就有两个严重的问题, 第一个问题是, 怎样才干差别unicode和ascii?计算机怎么知
道三个字节表示一个符号, 而不是分别表示三个符号呢?

第二个问题是, 我们已经知道,
英文字母仅仅用一个字节表示就够了, 假设unicode统一规定, 每一个符号用三个或四个字节
表示, 那么每一个英文字母前都必定有二到三个字节是0, 这对于存储来说是极大的浪费,
文本文件的大小会因此大出二三倍, 这是无法接受的.

它们造成的结果是:

1)  出现了unicode的多种存储方式, 也就是说有很多种不同的二进制格式,
    能够用来表示unicode.
2)  unicode在非常长一段时间内无法推广, 直到互联网的出现


3. UTF-8

互联网的普及, 强烈要求出现一种统一的编码方式. UTF-8就是在互联网上使用最广的一
种unicode的实现方式. 其它实现方式还包含UTF-16和UTF-32, 只是在互联网上基本不用.
反复一遍, 这里的关系是, UTF-8是Unicode的实现方式之中的一个.

UTF-8最大的一个特点, 就是它是一种变长的编码方式. 它能够使用1~6个字节表示一个符
号, 依据不同的符号而变化字节长度.

3.1 UTF-8的编码规则

UTF-8的编码规则非常easy, 仅仅有两条:

1) 对于单字节的符号, 字节的第一位设为0, 后面7位为这个符号的unicode码. 因此对于
   英语字母, UTF-8编码和ASCII码是同样的.

2) 对于n字节的符号(n>1), 第一个字节的前n位都设为1, 第n+1位设为0, 后面字节的前
   两位一律设为10. 剩下的没有提及的二进制位, 所有为这个符号的unicode码.

下表总结了编码规则, 字母x表示可用编码的位.

[plain] view plaincopy
  1. <span xmlns="http://www.w3.org/1999/xhtml" style="">// #txt---  
  2.    |  Unicode符号范围      |  UTF-8编码方式  
  3.  n |  (十六进制)           | (二进制)  
  4. ---+-----------------------+------------------------------------------------------  
  5.  1 | 0000 0000 - 0000 007F |                                              0xxxxxxx  
  6.  2 | 0000 0080 - 0000 07FF |                                     110xxxxx 10xxxxxx  
  7.  3 | 0000 0800 - 0000 FFFF |                            1110xxxx 10xxxxxx 10xxxxxx  
  8.  4 | 0001 0000 - 0010 FFFF |                   11110xxx 10xxxxxx 10xxxxxx 10xxxxxx  
  9.  5 | 0020 0000 - 03FF FFFF |          111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx  
  10.  6 | 0400 0000 - 7FFF FFFF | 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx  
  11.   
  12.                     表 1. UTF-8的编码规则  
  13. // #txt---end  
  14. </span>  



以下, 还是以汉字""为例, 演示怎样实现UTF-8编码.

已知""的unicode是4E25(1001110 00100101), 依据上表, 能够发现4E25处在第三行的
范围内(0000 0800 - 0000 FFFF), 因此""的UTF-8编码须要三个字节, 即格式是
"1110xxxx 10xxxxxx 10xxxxxx". 然后, 从""的最后一个二进制位開始, 依次从后向前
填入格式中的x, 多出的位补0. 这样就得到了, ""的UTF-8编码是 "11100100 10111000
10100101", 转换成十六进制就是E4B8A5.


4. Little endian和Big endian

上一节已经提到, Unicode码能够採用UCS-2格式直接存储. 以汉字""为例, Unicode码
是4E25, 须要用两个字节存储, 一个字节是4E, 还有一个字节是25. 存储的时候, 4E在前,
25在后, 就是Big endian方式; 25在前, 4E在后, 就是Little endian方式.
// Big Endian(4E25)    Little Endian(254E)

因此, 第一个字节在前, 就是"大头方式"(Big endian), 第二个字节在前就是"小头方式
"(Little endian).

4.1 计算机怎么知道某一个文件究竟採用哪一种方式编码?

(零宽度非换行空格(FEFF))

Unicode规范中定义, 每个文件的最前面分别增加一个表示编码顺序的字符, 这个字符
的名字叫做"零宽度非换行空格"(ZERO WIDTH NO-BREAK SPACE), 用FEFF表示. 这正好是
两个字节, 并且FF比FE大1.
// Big Endian(FEFF)    Little Endian(FFFE)

NOTE:
假设一个文本文件的头两个字节是FE FF, 就表示该文件採用大头方式; 假设头两个字节
是FF FE, 就表示该文件採用小头方式.

5. Unicode与UTF-8之间的转换(C语言版)

从表1我们非常明显能够得知Unicode与UTF-8的关系, 以下以C语言实现两者之间的转换.

  1. 1) 将一个字符的Unicode(UCS-2和UCS-4)编码转换成UTF-8编码.  
  2.   
  3. // #c---  
  4. /***************************************************************************** 
  5.  * 将一个字符的Unicode(UCS-2和UCS-4)编码转换成UTF-8编码. 
  6.  * 
  7.  * 參数: 
  8.  *    unic     字符的Unicode编码值 
  9.  *    pOutput  指向输出的用于存储UTF8编码值的缓冲区的指针 
  10.  *    outsize  pOutput缓冲的大小 
  11.  * 
  12.  * 返回值: 
  13.  *    返回转换后的字符的UTF8编码所占的字节数, 假设出错则返回 0 . 
  14.  * 
  15.  * 注意: 
  16.  *     1. UTF8没有字节序问题, 可是Unicode有字节序要求; 
  17.  *        字节序分为大端(Big Endian)和小端(Little Endian)两种; 
  18.  *        在Intel处理器中採用小端法表示, 在此採用小端法表示. (低地址存低位) 
  19.  *     2. 请保证 pOutput 缓冲区有最少有 6 字节的空间大小! 
  20.  ****************************************************************************/  
  21. int enc_unicode_to_utf8_one(unsigned long unic, unsigned char *pOutput,  
  22.         int outSize)  
  23. {  
  24.     assert(pOutput != NULL);  
  25.     assert(outSize >= 6);  
  26.   
  27.     if ( unic <= 0x0000007F )  
  28.     {  
  29.         // * U-00000000 - U-0000007F:  0xxxxxxx  
  30.         *pOutput     = (unic & 0x7F);  
  31.         return 1;  
  32.     }  
  33.     else if ( unic >= 0x00000080 && unic <= 0x000007FF )  
  34.     {  
  35.         // * U-00000080 - U-000007FF:  110xxxxx 10xxxxxx  
  36.         *(pOutput+1) = (unic & 0x3F) | 0x80;  
  37.         *pOutput     = ((unic >> 6) & 0x1F) | 0xC0;  
  38.         return 2;  
  39.     }  
  40.     else if ( unic >= 0x00000800 && unic <= 0x0000FFFF )  
  41.     {  
  42.         // * U-00000800 - U-0000FFFF:  1110xxxx 10xxxxxx 10xxxxxx  
  43.         *(pOutput+2) = (unic & 0x3F) | 0x80;  
  44.         *(pOutput+1) = ((unic >>  6) & 0x3F) | 0x80;  
  45.         *pOutput     = ((unic >> 12) & 0x0F) | 0xE0;  
  46.         return 3;  
  47.     }  
  48.     else if ( unic >= 0x00010000 && unic <= 0x001FFFFF )  
  49.     {  
  50.         // * U-00010000 - U-001FFFFF:  11110xxx 10xxxxxx 10xxxxxx 10xxxxxx  
  51.         *(pOutput+3) = (unic & 0x3F) | 0x80;  
  52.         *(pOutput+2) = ((unic >>  6) & 0x3F) | 0x80;  
  53.         *(pOutput+1) = ((unic >> 12) & 0x3F) | 0x80;  
  54.         *pOutput     = ((unic >> 18) & 0x07) | 0xF0;  
  55.         return 4;  
  56.     }  
  57.     else if ( unic >= 0x00200000 && unic <= 0x03FFFFFF )  
  58.     {  
  59.         // * U-00200000 - U-03FFFFFF:  111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx  
  60.         *(pOutput+4) = (unic & 0x3F) | 0x80;  
  61.         *(pOutput+3) = ((unic >>  6) & 0x3F) | 0x80;  
  62.         *(pOutput+2) = ((unic >> 12) & 0x3F) | 0x80;  
  63.         *(pOutput+1) = ((unic >> 18) & 0x3F) | 0x80;  
  64.         *pOutput     = ((unic >> 24) & 0x03) | 0xF8;  
  65.         return 5;  
  66.     }  
  67.     else if ( unic >= 0x04000000 && unic <= 0x7FFFFFFF )  
  68.     {  
  69.         // * U-04000000 - U-7FFFFFFF:  1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx  
  70.         *(pOutput+5) = (unic & 0x3F) | 0x80;  
  71.         *(pOutput+4) = ((unic >>  6) & 0x3F) | 0x80;  
  72.         *(pOutput+3) = ((unic >> 12) & 0x3F) | 0x80;  
  73.         *(pOutput+2) = ((unic >> 18) & 0x3F) | 0x80;  
  74.         *(pOutput+1) = ((unic >> 24) & 0x3F) | 0x80;  
  75.         *pOutput     = ((unic >> 30) & 0x01) | 0xFC;  
  76.         return 6;  
  77.     }  
  78.   
  79.     return 0;  
  80. }  
  81. // #c---end  



2) 将一个字符的UTF8编码转换成Unicode(UCS-2和UCS-4)编码.
  1. <span xmlns="http://www.w3.org/1999/xhtml" style="">// #c---  
  2. /***************************************************************************** 
  3.  * 将一个字符的UTF8编码转换成Unicode(UCS-2和UCS-4)编码. 
  4.  * 
  5.  * 參数: 
  6.  *    pInput      指向输入缓冲区, 以UTF-8编码 
  7.  *    Unic        指向输出缓冲区, 其保存的数据即是Unicode编码值, 
  8.  *                类型为unsigned long . 
  9.  * 
  10.  * 返回值: 
  11.  *    成功则返回该字符的UTF8编码所占用的字节数; 失败则返回0. 
  12.  * 
  13.  * 注意: 
  14.  *     1. UTF8没有字节序问题, 可是Unicode有字节序要求; 
  15.  *        字节序分为大端(Big Endian)和小端(Little Endian)两种; 
  16.  *        在Intel处理器中採用小端法表示, 在此採用小端法表示. (低地址存低位) 
  17.  ****************************************************************************/  
  18. int enc_utf8_to_unicode_one(const unsigned char* pInput, unsigned long *Unic)  
  19. {  
  20.     assert(pInput != NULL && Unic != NULL);  
  21.   
  22.     // b1 表示UTF-8编码的pInput中的高字节, b2 表示次高字节, ...  
  23.     char b1, b2, b3, b4, b5, b6;  
  24.   
  25.     *Unic = 0x0; // 把 *Unic 初始化为全零  
  26.     int utfbytes = enc_get_utf8_size(*pInput);  
  27.     unsigned char *pOutput = (unsigned char *) Unic;  
  28.   
  29.     switch ( utfbytes )  
  30.     {  
  31.         case 0:  
  32.             *pOutput     = *pInput;  
  33.             utfbytes    += 1;  
  34.             break;  
  35.         case 2:  
  36.             b1 = *pInput;  
  37.             b2 = *(pInput + 1);  
  38.             if ( (b2 & 0xE0) != 0x80 )  
  39.                 return 0;  
  40.             *pOutput     = (b1 << 6) + (b2 & 0x3F);  
  41.             *(pOutput+1) = (b1 >> 2) & 0x07;  
  42.             break;  
  43.         case 3:  
  44.             b1 = *pInput;  
  45.             b2 = *(pInput + 1);  
  46.             b3 = *(pInput + 2);  
  47.             if ( ((b2 & 0xC0) != 0x80) || ((b3 & 0xC0) != 0x80) )  
  48.                 return 0;  
  49.             *pOutput     = (b2 << 6) + (b3 & 0x3F);  
  50.             *(pOutput+1) = (b1 << 4) + ((b2 >> 2) & 0x0F);  
  51.             break;  
  52.         case 4:  
  53.             b1 = *pInput;  
  54.             b2 = *(pInput + 1);  
  55.             b3 = *(pInput + 2);  
  56.             b4 = *(pInput + 3);  
  57.             if ( ((b2 & 0xC0) != 0x80) || ((b3 & 0xC0) != 0x80)  
  58.                     || ((b4 & 0xC0) != 0x80) )  
  59.                 return 0;  
  60.             *pOutput     = (b3 << 6) + (b4 & 0x3F);  
  61.             *(pOutput+1) = (b2 << 4) + ((b3 >> 2) & 0x0F);  
  62.             *(pOutput+2) = ((b1 << 2) & 0x1C)  + ((b2 >> 4) & 0x03);  
  63.             break;  
  64.         case 5:  
  65.             b1 = *pInput;  
  66.             b2 = *(pInput + 1);  
  67.             b3 = *(pInput + 2);  
  68.             b4 = *(pInput + 3);  
  69.             b5 = *(pInput + 4);  
  70.             if ( ((b2 & 0xC0) != 0x80) || ((b3 & 0xC0) != 0x80)  
  71.                     || ((b4 & 0xC0) != 0x80) || ((b5 & 0xC0) != 0x80) )  
  72.                 return 0;  
  73.             *pOutput     = (b4 << 6) + (b5 & 0x3F);  
  74.             *(pOutput+1) = (b3 << 4) + ((b4 >> 2) & 0x0F);  
  75.             *(pOutput+2) = (b2 << 2) + ((b3 >> 4) & 0x03);  
  76.             *(pOutput+3) = (b1 << 6);  
  77.             break;  
  78.         case 6:  
  79.             b1 = *pInput;  
  80.             b2 = *(pInput + 1);  
  81.             b3 = *(pInput + 2);  
  82.             b4 = *(pInput + 3);  
  83.             b5 = *(pInput + 4);  
  84.             b6 = *(pInput + 5);  
  85.             if ( ((b2 & 0xC0) != 0x80) || ((b3 & 0xC0) != 0x80)  
  86.                     || ((b4 & 0xC0) != 0x80) || ((b5 & 0xC0) != 0x80)  
  87.                     || ((b6 & 0xC0) != 0x80) )  
  88.                 return 0;  
  89.             *pOutput     = (b5 << 6) + (b6 & 0x3F);  
  90.             *(pOutput+1) = (b5 << 4) + ((b6 >> 2) & 0x0F);  
  91.             *(pOutput+2) = (b3 << 2) + ((b4 >> 4) & 0x03);  
  92.             *(pOutput+3) = ((b1 << 6) & 0x40) + (b2 & 0x3F);  
  93.             break;  
  94.         default:  
  95.             return 0;  
  96.             break;  
  97.     }  
  98.   
  99.     return utfbytes;  
  100. }  
  101. // #c---end  
  102. </span>  
6. Unicode与UTF-8之间的转换(lua语言版)

-- unicode_to_utf8
local function unicode_to_utf8(convertStr)

    if type(convertStr)~="string" then
        return convertStr
    end

    local bit = require("bit")
    local resultStr=""
    local i=1
    while true do
        
        local num1=string.byte(convertStr,i)
        local unicode
        
        if num1~=nil and string.sub(convertStr,i,i+1)=="\\u" then
            unicode=tonumber("0x"..string.sub(convertStr,i+2,i+5))
            i=i+6
        elseif num1~=nil then
            unicode=num1
            i=i+1
        else
            break
        end

        if unicode <= 0x007f then
            resultStr=resultStr..string.char(bit.band(unicode,0x7f))
        elseif unicode >= 0x0080 and unicode <= 0x07ff then
            resultStr=resultStr..string.char(bit.bor(0xc0,bit.band(bit.rshift(unicode,6),0x1f)))
            resultStr=resultStr..string.char(bit.bor(0x80,bit.band(unicode,0x3f)))
        elseif unicode >= 0x0800 and unicode <= 0xffff then
            resultStr=resultStr..string.char(bit.bor(0xe0,bit.band(bit.rshift(unicode,12),0x0f)))
            resultStr=resultStr..string.char(bit.bor(0x80,bit.band(bit.rshift(unicode,6),0x3f)))
            resultStr=resultStr..string.char(bit.bor(0x80,bit.band(unicode,0x3f)))
        end
    end
    resultStr=resultStr..'\0'
    return resultStr
end


 
反对 0举报 0 评论 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • LUA解析json小demo
    需要修改的json数据gui-config.json{"configs": [{"server": "JP3.ISS.TF","server_port": 443,"password": "58603228","method": "aes-256-cfb","remarks": ""},{"serv
    03-16
  • 第二十三篇:在SOUI中使用LUA脚本开发界面
    像写网页一样做客户端界面可能是很多客户端开发的理想。做好一个可以实现和用户交互的动态网页应该包含两个部分:使用html做网页的布局,使用脚本如vbscript,javascript做用户交互的逻辑。当需求变化时,只需要在服务端把相关代码调整一下,用户即可看到新的
    03-16
  • windows下编译lua源码"><转>windows下编译lua源
    因为之前一直使用 lua for windows 来搭建lua的使用环境,但是最新的 lua for windows 还没有lua5.2,我又想用这个版本的lua,所以被逼无奈只能自己编一下lua源码。首先从 lua的官网 下载你想要使用的lua源码,比如我下载的就是lua5.2。解压后内容如下:
    03-16
  • lua:使用Lua处理游戏数据
    在之前lua学习:lua作配置文件里,我们学会了用lua作配置文件。其实lua在游戏开发中可以作为一个强大的保存、载入游戏数据的工具。 比如说,现在我有一份表单:data.xls用什么工具解析这个Excel文件并将数据载入游戏?我们可以使用Lua来完成这个工作。不过要
    03-16
  • 第1课 - 学习 Lua 的意义
    第1课 - 学习 Lua 的意义
    第1课 - 学习 Lua 的意义1.Lua 简介           (1) 1993年、巴西(2) 小巧精致的脚本语言,大小只有 200K(3) 用标准C语言写成,能够在所有的平台上编译运行(4) 发明的目标是嵌入在C/C++中,为应用程序提供灵活的扩展和定制功能(5) 不适合用于开发
    03-16
  • RedisTemplate 常用API+事务+陷阱+序列化+pipeline+LUA
    RedisTemplate 常用API+事务+陷阱+序列化+pipel
    https://www.jianshu.com/p/7bf5dc61ca06/https://blog.csdn.net/qq_34021712/article/details/79606551https://www.jianshu.com/p/c9f5718e58f0dependencygroupIdorg.springframework.boot/groupIdartifactIdspring-boot-starter-data-redis/artifactId/depe
    03-08
  • Nginx动态路由的新姿势:使用Go取代lua nginx路由规则
    Nginx动态路由的新姿势:使用Go取代lua nginx路
    导语: 在Nitro 中, 我们需要一款专业的负载均衡器。 经过一番研究之后,Mihai Todor和我使用Go构建了基于Nginx、Redis 协议的路由器解决方案,其中nginx负责所有繁重工作,路由器本身并不承载流量。 这个解决方案过去一年在生产环境中运行顺畅。 以下是我
    03-08
  • cocos2d-lua 控制台输入Lua指令方便调试
    用脚本进行开发,如果不能实时去输入指令,就丧失了脚本的一大特色,所以对cocos2d-x程序稍微修改下,使其可以直接从控制台读入lua指令,方便调试。1 首先在行首加入lua的引用,如下1 #include "main.h"2 #include "AppDelegate.h"3 #include "cocos2d.h"4 #i
    02-09
  • lua_touserdata
    void *lua_touserdata(lua_State*L,intindex);如果给定索引处的值是一个完整的userdata,函数返回内存块的地址。如果值是一个lightuserdata,那么就返回它表示的指针。否则,返回NULL。例如: 在CCLuaStack::executeFunction()函数中有一段代码是用来获取c++
    02-09
  • Lua 5.2 中文参考手册
    闲来无事,发现Lua更新到了5.2.2,参考手册也更到了5.2,在网上发现只有云风翻译的5.1版,花了几天时间翻译了一些。参考手册有点长,又要随时修改,所以在github上建了项目,有需要的朋友可以看看,同时也欢迎指正。中文手册:Lua 5.2中文参考手册
    02-09
点击排行