用Java写一个分布式缓存——缓存淘汰算法

   2023-02-08 学习力0
核心提示:前言之前也用过一些缓存中间件,框架,也想着自己是不是也能用Java写一个出来,于是就有了这个想法,打算在写的过程中同步进行总结。源码:weloe/Java-Distributed-Cache (github.com)本篇代码:Java-Distributed-Cache/src/main/java/com/weloe/cache/outstr

前言

之前也用过一些缓存中间件,框架,也想着自己是不是也能用Java写一个出来,于是就有了这个想法,打算在写的过程中同步进行总结。

源码:weloe/Java-Distributed-Cache (github.com)

本篇代码:

Java-Distributed-Cache/src/main/java/com/weloe/cache/outstrategy at master · weloe/Java-Distributed-Cache (github.com)

Java-Distributed-Cache/src/test/java/com/weloe/cache/outstrategy at master · weloe/Java-Distributed-Cache (github.com)

我们可以想想几个问题,什么是缓存?为什么需要缓存?

什么是缓存?将之前请求的数据暂存,遇到同样的请求/状况直接返回,这就是缓存。

为什么需要?同样的情况下,直接返回数据,无需其他操作,能加快服务器反应速度,减轻服务器压力。

那么缓存怎么存?简单的缓存为键值对,可以用Map存储。这就完了吗?如果我们一直往Map中存储数据,占用的内存会越来越大,这时候怎么办?

这就是本篇需要解决的问题。

要使用缓存,就必然会面临到缓存使用空间达到上限的问题,这个时候就需要从已有的缓存数据中淘汰一部分去维持缓存的可用性。

LRU

力扣上的相关题 https://leetcode.cn/problems/lru-cache/

LRU,缓存淘汰算法,最近最少使用(Least Recently Used),就是一种选择淘汰数据的策略

原理:为最近被访问的数据进行缓存,淘汰不常被访问的数据。

也就是说我们认为最近使用过的数据应该是有用的,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。

举一个我们最常见的例子,手机可用把软件放到后台运行,比如我们先后打开了日历,设置,闹钟。后台的顺序是 日历->设置->闹钟,如果这台手机只能打开三个应用,再打开 应用商城 ,后台的顺序会变成 应用商城->日历->设置。

从这个案例可以知道LRU的主要两个操作的具体思路,一个数据结构存值,一个数据结构存储后台顺序。

缓存一般以key,value形式存储,因此选择map存储,而存储顺序的数据结构由于要不断改动节点顺序,选择双向链表

public class LRUCache<K, V> implements CacheStrategy<K, V> {
    private Map<K, V> map;
    private int capacity;
    private Deque<K> queue;
    private Callback callback;


    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.map = new HashMap();
        this.queue = new LinkedList();
    }
}

put(key,value)

如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

   	public void put(int key, int value) {
        if (map.containsKey(key)) {
            queue.remove(key);
        }
        queue.addFirst(key);
        map.put(key, value);

        // 缓存达到上限
        if (queue.size() > capacity) {

            // 移除
            K last = queue.removeLast();
            V removeValue = map.remove(last);

            // 回调
            if (callback != null) {
                callback.callback(last, removeValue);
            }
        }
        return value;

    }

get(key)

如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1

    public V get(K key) {
        // 如果已经缓存过该数据
        if (map.containsKey(key)) {
            queue.remove(key);
            queue.addFirst(key);
            return map.get(key);
        }
        return null;
    }

弊端,容易出现缓存污染问题

(k1,v1) (k2,v2),(k3,v3),(k4,v4)

(k2,v2),(k4,v4),(k1,v1),(k3,v3)

LRU-K

LRU-K算法是对LRU算法的改进,将原先进入缓存队列的评判标准从访问一次改为访问K次。

LRU-K算法有两个队列,一个是缓存队列,一个是数据访问历史队列。当访问一个数据时,首先先在访问历史队列中累加访问次数,当历史访问记录超过K次后,才将数据缓存至缓存队列,从而避免缓存队列被污染。同时访问历史队列中的数据可以按照LRU的规则进行淘汰。具体如下:

public class LRUKCache<K, V> extends LRUCache<K, V> {

    // 进入缓存队列的评判标准
    private int putStandard;

    // 访问数据历史记录
    private LRUCache<Object, Integer> historyList;

    public LRUKCache(int cacheSize, int historyCapacity, int putStandard) {
        super(cacheSize);
        this.putStandard = putStandard;
        this.historyList = new LRUCache(historyCapacity);
    }


    @Override
    public V get(K key) {
        // 记录数据访问次数
        Integer historyCount = historyList.get(key);
        historyCount = historyCount == null ? 0 : historyCount;
        historyList.put(key, ++historyCount);
        return super.get(key);
    }

    @Override
    public V put(K key, V value) {
        if (value == null) {
            return null;
        }
        // 如果已经在缓存里则直接返回
        if (super.get(key) != null) {
            return super.put(key, value);
        }
        // 如果数据历史访问次数达到上限,则加入缓存
        Integer historyCount = historyList.get(key);
        historyCount = (historyCount == null) ? 0 : historyCount;
        if (removeCache(historyCount)) {
            // 移除历史访问记录,加入缓存
            historyList.remove(key);
            return super.put(key, value);
        }

        return value;
    }

    private boolean removeCache(Integer historyCount) {
        return historyCount >= putStandard;
    }

    public void setPutStandard(int putStandard) {
        this.putStandard = putStandard;
    }

    @Override
    public void setCallback(Callback<K, V> callback) {
        super.setCallback(callback);
    }

    public void setHistoryListCallback(Callback<K, V> callback) {
        historyList.setCallback((Callback<Object, Integer>) callback);
    }

}

LRU-K能降低缓存污染发生的概率,但是需要额外记录对象访问次数,内存消耗较大。

测试

class LRUCacheTest {

    @Test
    void lru(){
        CacheStrategy<Integer, Integer> lruCache = new LRUCache<>(5);
        lruCache.setCallback((integer, integer2) -> System.out.println("淘汰"+integer+"="+integer2));
        lruCache.put(1,1);
        lruCache.put(2,2);
        lruCache.put(3,3);
        lruCache.put(4,4);
        lruCache.put(5,5);
        lruCache.put(6,6);
        List list = lruCache.list();
        System.out.println(list);
    }

}
淘汰1=1
[2=2, 3=3, 4=4, 5=5, 6=6]
class LRUKCacheTest {

    @Test
    void lrukCacheTest() {
        LRUKCache<Integer, Integer> lrukCache = new LRUKCache<>(2,3,1);
        lrukCache.setHistoryListCallback((integer, integer2) -> System.out.println("记录队列淘汰"+integer+"="+integer2));
        lrukCache.setCallback((integer, integer2) -> System.out.println("缓存淘汰"+integer+"="+integer2));
        lrukCache.get(1);
        lrukCache.get(1);
        lrukCache.get(1);
        lrukCache.get(2);
        lrukCache.get(2);
        lrukCache.get(2);
        lrukCache.get(3);
        lrukCache.get(3);
        lrukCache.get(3);
        lrukCache.get(4);
        lrukCache.get(4);
        lrukCache.get(4);
        lrukCache.put(1,2);
        lrukCache.put(2,2);
        lrukCache.put(3,2);
        lrukCache.put(4,2);
        List list = lrukCache.list();
        System.out.println(list);
    }
}
记录队列淘汰1=3
缓存淘汰2=2
[3=2, 4=2]
 
反对 0举报 0 评论 0
 

免责声明:本文仅代表作者个人观点,与乐学笔记(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

  • Java项目导出数据为 PDF 文件的操作代码
    Java项目导出数据为 PDF 文件的操作代码
    目录Java项目如何导出数据为 PDF 文件?一、代码结构如下二、代码说明1、添加依赖 pom.xml2、HTML模板文件 audit_order_record.html3、添加字体4、PDF 导出工具类5、导出接口6、打开浏览器测试三、效果图Java项目如何导出数据为 PDF 文件?一个小需求,需要将
  • 盘点Java中延时任务的多种实现方式 java 延时队列怎么实现
    盘点Java中延时任务的多种实现方式 java 延时队
    目录场景描述实现方式一、挂起线程二、ScheduledExecutorService 延迟任务线程池三、DelayQueue(延时队列)四、Redis-为key指定超时时长,并监听失效key五、时间轮六、消息队列-延迟队列场景描述①需要实现一个定时发布系统通告的功能,如何实现? ②支付超时
  • Java Semaphore信号量使用分析讲解
    Java Semaphore信号量使用分析讲解
    目录前言介绍和使用API介绍基本使用原理介绍获取许可acquire()释放许可release()总结前言大家应该都用过synchronized 关键字加锁,用来保证某个时刻只允许一个线程运行。那么如果控制某个时刻允许指定数量的线程执行,有什么好的办法呢? 答案就是JUC提供的信
  • 【Java并发入门】03 互斥锁(上):解决原子性问题
    【Java并发入门】03 互斥锁(上):解决原子性
    原子性问题的源头是线程切换Q:如果禁用 CPU 线程切换是不是就解决这个问题了?A:单核 CPU 可行,但到了多核 CPU 的时候,有可能是不同的核在处理同一个变量,即便不切换线程,也有问题。所以,解决原子性的关键是「同一时刻只有一个线程处理该变量,也被称
    02-09
  • Java限流实现的几种方法详解 限流的实现方式
    Java限流实现的几种方法详解 限流的实现方式
    目录计数器信号量滑动窗口漏桶令牌桶测试示例代码计数器计数器限流方式比较粗暴,一次访问就增加一次计数,在系统内设置每 N 秒的访问量,超过访问量的访问直接丢弃,从而实现限流访问。具体大概是以下步骤:将时间划分为固定的窗口大小,例如 1 s;在窗口时间
    02-09 Java限流
  • Java多线程Thread类的使用详解
    Java多线程Thread类的使用详解
    目录1.创建一个线程2.start()方法与run()方法3.查看线程4.创建线程的各种方法4.1实现Runnable接口4.2使用匿名内部类4.3使用匿名内部类实现Runnable4.4使用Lambda表达式1.创建一个线程Java操作线程最核心的类就是Thread类创建线程有很多方法,下面我们写一个Myt
  • java如何读取某个文件夹中的全部文件(包括子文件夹)
    java如何读取某个文件夹中的全部文件(包括子文
    目录java读取某个文件夹中的全部文件主要思路示例java获取文件夹下指定的文件java读取某个文件夹中的全部文件主要思路使用file.listFiles()函数可以获取到某文件夹下的所有文件信息,如果需要访问子文件夹下的文件,则需要对获取到的文件信息进行递归遍历,如
  • Java开发学习(四十六)----MyBatisPlus新增语句之id生成策略控制及其简化配置
    Java开发学习(四十六)----MyBatisPlus新增语句
    在前面有一篇博客:Java开发学习(四十一)----MyBatisPlus标准数据层(增删查改分页)开发,我们在新增的时候留了一个问题,就是新增成功后,主键ID是一个很长串的内容。我们更想要的是按照数据库表字段进行自增长,在解决这个问题之前,我们先来分析下ID该如
    02-09
  • Java数据结构之KMP算法详解以及代码实现
    Java数据结构之KMP算法详解以及代码实现
    目录暴力匹配算法(Brute-Force,BF)概念和原理next数组KMP匹配KMP全匹配总结我们此前学了前缀树Trie的实现原理以及Java代码的实现。Trie树很好,但是它只能基于前缀匹配实现功能。但是如果我们的需求是:一个已知字符串中查找子串,并且子串并不一定符合前
  • Java数据结构之AC自动机算法的实现 ac自动机算法
    Java数据结构之AC自动机算法的实现 ac自动机算
    目录1 概念和原理2 节点定义3 构建Trie前缀树4 构建fail失配指针5 匹配文本6 案例演示7 总结1 概念和原理一般的字符串匹配算法都是匹配一个子串,例如KMP、Trie,那么如果同时匹配多个子串呢?此时就需要用到AC自动机了。AC自动机算法是一个多模式字符串匹配
点击排行